Step of Proof: inv_image_ind_a
9,38
postcript
pdf
Inference at
*
1
1
1
1
I
of proof for Lemma
inv
image
ind
a
:
1.
T
: Type
2.
r
:
T
T
3.
S
: Type
4.
f
:
S
T
5. WellFnd{i}(
T
;
x
,
y
.
r
(
x
,
y
))
6.
P
:
S
7.
j
:
S
. (
k
:
S
.
r
(
f
(
k
),
f
(
j
))
P
(
k
))
P
(
j
)
8.
S
9.
j
:
T
10.
k
:
T
.
r
(
k
,
j
)
(
y
:
S
. (
f
(
y
) =
k
)
P
(
y
))
11.
y
:
S
12.
f
(
y
) =
j
P
(
y
)
latex
by ((% Establish inductive hypothesis %
Assert
y'
:
S
.
r
(
f
(
y'
),
f
(
y
))
P
(
y'
))
A
CollapseTHEN (
AC
IfLabL
AC
[`main`,OnHyps [12;10;9;8] Thin % cleanup %
AC
;`assertion`,((RepD)
A
CollapseTHENA (
AC
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
]))
latex
AC
1
:
AC1:
13.
y'
:
S
AC1:
14.
r
(
f
(
y'
),
f
(
y
))
AC1:
P
(
y'
)
AC
2
:
AC2:
8.
y
:
S
AC2:
9.
y'
:
S
.
r
(
f
(
y'
),
f
(
y
))
P
(
y'
)
AC2:
P
(
y
)
AC
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
x
(
s1
,
s2
)
,
origin